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A NUMERICAL MODEL FOR THE COMPUTATION OF RADIANCE DISTRIBUTIONS
IN NATURAL WATERS WITH WIND-ROUGHENED SURFACES

Curtis D. Mobley
Rudolph W. Preisendorfer

ABSTRACT. This report is a repository of the details of
derivation of a numerical procedure to determine the unpolarized
radiance distribution as a function of depth, direction, and
wavelength, in a natural hydrosol such as a lake or sea. The
input to the model consists of (i) the incidence radiance
distribution at the air-water surface (ii) the state of randomness
of the air-water surface as a function of wind speed, (iii) the
volume scattering and volume attenuation funé¢tions of the medium

as a function of depth and wavelength, and (iv) the type of bottom
boundary.

The fundamental mathematical operation in the development of
the numerical model is the discretization over direction space of
the continuous radiative transfer equation. The directionally
discretized radiances, called quad~averaged radiances, are the
averages over -a finite set of solid angles of the directionally
continuous radiance. The quad-averaged equations are azimuthally
decomposed using standard Fourier analysis to obtain equations for
the quad-averaged radiance amplitudes. These amplitude equations
are then developed in terms of reflectance and transmittance
functions. The reflectances and transmittances are continuous
functions of depth and are governed by a set of Riccati equations
which is easily integrated. The depth-dependent, quad-averaged
radiances are assembled from the solution reflectances and

transmittances of the water body, in combination with the boundary
conditions.

The model has an expandable library of derived quantities
that are of use in various applications of optics to natural
waters, such as marine biological studies, underwater visual
search tasks, remote sensing, and climatology.

1. INTRODUCTION
This report presents a numerical technique for computing the radiance
distribution in a natural hydrosol, given the optical properties of the
hydrosol itself and appropriate boundary conditions at the surface and bottom
of the water body, along with the radiance incident on the water surface.
General knowledge of the rgdiance distribution in a natural hydrosol is a

prerequisite for the solution of more specific problems, such as those
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occurring in studies of photosynthesis, underwater visibility, remote sensing
of the ocean from aircraft or satellites, heating of the upper layers of the
medium, and climatology. Our goal is thus the development of a mpdel of some
generality and relatively high computational efficiency, rather than the
solution of any particular problem. An analogous goal would be the
formulation of a numerical model for the general circulation of the atmosphere
or oceans. Such a model, once available, can be used as a tool for the
solution of many specific problems. Some of the immediate applications of the
present model are to study various hypotheses about the behavior of the
radiance distribution with depth, direction, and wavelength, and to establish
the ranges of validity of simpler light field models that are potentially
useful in marine biological studies and in underwater visual search tasks.
Water bodies such as oceans and lakes are well approximated locally as
plane parallel media for the purpose of determining the light field within
these natural hydrosols. Thus we consider a water body which is laterally
homogeneous, although its optical properties may vary arbitrarily with
depth. The wind-blown water surface forms the upper boundary of the hydrosol,
and a plane of specified radiance reflectance forms the lower boundary. The
upper boundary is statistically homogeneous but exhibits a directional
anisotropy due to the presence of wind-generated waves. The lower boundary,
for example a sandy lake bottom, is less prone to anisotropy. Natural waters
are directionally isotropic with respect to the scattering properties of the
medium, although the scattering functions may be far from spherical in shape
and the optical properties of the water may vary markedly with depth.
Moreover, the dominant light sources in the euphotic zones and mixed layers of
natural hydrosols are the sun and diffuse sky light, rather than internal

sources such as fluorescing chlorophyll in phytoplankton.
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a. Assumptions of the Natural Hydrosol Model (NHM)

With these comments in mind, we define in this work a Natural Hydrosol
Model (NHM) by adopting the following assumptions:

(1) The w#ter body is a plane-parallel medium which

(a) has no internal light sources, and is non-fluorescent
(b) is directionally isotropic,
(c) 1is laterally homogeneous, but is inhomogeneous with depth.

(2) The upper boundary is the random air-water interface, which is wind-
ruffled, laterally homogeneous, and azimuthally anisotropic.

(3) The lower boundary is a surface whose reflectance is azimuthally
isotropic. This boundary may be either the physical bottom of an
optically shallow water body, or a plane in an optically infinitely
deep water body, below which the water is homogeneous with depth.

(4) There is radiant flux incident downward on the upper boundary.
There is no radiant flux incident upward on the lower boundary.

(5) The radiance field is monochromatic and unpolarized.

The exact meaning of these assumptions and their mathematical consequences
will be clarified in the discussions below.

Section 2 presents the integrodifferential equation which governs the
light field under the assumptions of the Natural Hydrosol Modél. In §3 we
present a technique for the directional discretization of the continuous
equations of §2, and this is followed by a review of the Fourier analysis of
discrete functions in §4. These analysis formulas are then applied in §5 to
the directionally discrete equations of §3, in order to obtain a discrete
spectral model. These spectral equations are algebraically reformulated in §6

in order to derive equations which are suitable for numerical solution on a




§1

digital computer. In §7 we show how to solve the model equations for the
spectral amplitudes, and then how to reconstitute the desired radiance
distribution from those spectral amplitudes. Section 8 discusses the
computation of various derived quantities from the computed radiances and the
conséquences for simple models of the light field in natural hydrosols.
Sections 9-11 discuss certain preliminary calculations which are needed in
order to set up the desired boundary conditions and inherent optical
properties as input to the Natural Hydrosol Model. We close with a section on

computer considerations, such as array storage.
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2. GOVERNING EQUATIONS

In this section we present the equations which govern the light field of
the Natural Hydrosol Model. Our starting point is the radiative transfer
equation plus equations which describe how light is reflected by.and
transmitted through the boundaries of the water body. Figure 1 establishes a
coordinate system for the expression of these equations.

-According to lc of the Natural Hydrosol Model assumptions, the water body
cah be represented by extensive horizontal layers of scatteting-abQOtbing
material parallel to the upper énd lower boundary surfaces. As shown in

Fig. 1, a wind-oriented spherical coordinate system (y,8,4) is defined so that

Figure 1.--The geometric setting of the Natural Hydrosol Model and definition
of the wind-based coordinate system. The i vector is along the wind
direction. The i,j,k vectors form a right-handed system with k positive
upward.
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the downwind direction at the water surface has an azimuthal angle of ¢ = 0.
The azimuthal angle ¢, 0 < ¢ < 2w, is measured positive counterclockwise from
the downwind direction when looking downward on the water surface from above.
The polar (or zenith) angle 8, 0 < @ < v, is measured from the unit outward
normal k (the zenith direction). The normal k is perpendicular to the
bounding planes of the water body and defines the upward qirection. Since the
hydrosol is laterally homogeneous, the depth coordinate y is the only relevant
spatial coordinate. We take the optical depth y to be a.running depth
variable, a < y < b,.measured positive downward from the upper surface,
located at level a, to the lower boundary surface at level b.

We adopt the convention that the two depths a and x seen in Fig. 1 define
a region a £ y < x, which we call the upper boundary. In most applications of
the model, this region can be considered infinitesimal in thickness,
consisting only of the air-water surface. However, there are situations in
which the upper boundary may actually be a composite medium consisting of the
infinitesimal air-water surface plus a slab of finite thickness representing,
for example, an oil film or a surface layer of relatively great biological
activity just below the surface. In either instance the notation is such that
"a" denotes a point in the air and just above the water surface, while "x"
denotes a point in the water below the surface. In our basic computations,
the upper boundary is always considered to be an infinitesimally thin layer,
which merely reflects or transmits light without absorption; in such a case
the boundary itself has no internal structure. The lower boundary is defined
as a slab of depths y, z £ y £ b, where b~z may be infinitesimal, finite, or
infinite. In any of these cases "z'" denotes a depth in the water just above

the lower boundary, and "b" denotes the depth of the lower plane of this

boundary. The water body itself is the plane parallel region of depths y such
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that x < y £ z. We will often use the notation "X[y,,y;]" to refer to the
slab between and including depths y, and y,. Thus the upper boundary of the
natural hydrosol is the slab X{a,x], the body or water column is X[x,z], the
lower boundary is X[z,b), and so on. The use of two symbols "a" and "x" in
X(a,x] helps keep in mind that the top of the air-water surface is at a and
the bottom is at x, even though these are infinitesimally close.

The independent variables for the Natural Hydrosol Model are the optical
depth y and the direction §{ = §(0,¢), where £ = (§,,£,,E3) is a unit vector,
i.e., £*£ = 1. It is often convenient to use u = cos® = §-k rather than @

itself; then we can think of § as specified by u and ¢: & = £(u,s), where

-1 su<1l, and 0 £ ¢ < 27, If a wind-oriented cartesian coordinate system
i-j-k is defined in accordance with Fig. 1, with i pointed downwind, k upward

as defined above, and j = k x i in the crosswind direction (at ¢ = w/2), then

£(8,4) can be written in any of the forms

v
1]

= gli + gz.i + 535 = [51,52153]

(sin@ cos¢, sin® sind, cosd]

[(l-uz)!2 cosd, (l-uz)% siné, u)] .

The fundamental dependent variable of the Natural Hydrosol Model is the
spectral radfance N(y;E32) at depth y in direction { at wavelength A. The.
photons are travelling in direction . Since the water body is assumed non-
fluorescent and the radiance is monochromatic, the wavelength A is held‘
fixed. We therefore drop "A" from the explicit notation and write the

radiance as N(y;g;1r) = N(y3;g) = N(ysu,¢), with units of W-m—2-sr~1-nm-1.
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In the model to be developed we begin with radiant energy from the sun or
sky incident upon the random water surface at y = a. This energy is partly
reflected back to the sky and partly transmitted into the water column at
y = x and below. The details of this ttansmission\through the random surface
are determined by the wave field on the water surface (and hence by the wind
speed) and by the directional distribution of the light sources. It is
intuitively clear that the time-averaged or ensemble-averaged radiance N(y;Ef)
is thereby determined at each depth y of the entire water column, x £ y < z,
and for all directions £, by the absorption and scattering properties of the
water and by tﬁe interreflections of radiance between the upper and lower
boundaries. The analytical basis for this belief rests in the equation
governing the radiance field in the body of the water and in the boundary

conditions above and below the water body.

a. The Radiative Transfer Equation

The equation for conservation of unpolarized, monochromatic radiance
N(z3£) in a source~free optical medium is the Radiative Transfer Equation (cf.
Preisendorfer, 1965, pp. 65-69):

dN(z5g)

—dr; = -a(z) N(z3E) + J_' N(z3£") o(z3g';58) da(g') (2.1)
Here ¢ 1s geometric depth measured positive downward, i.e., along the
direction -k. Moreover, r is the geometric distance (always positive) from a
point at the geometric depth ¢ measured along direction §; r and ¢ have units
of meters. = is the set of all unit vectors §, i.e. the unit sphere, and
da(g') is an infinitesimal element of solid angle about direction g£'. The

volume attenuation function a{z), with units of m~!, and the volume scattering
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function o(53E3E"'), with units of m~!-sr—!, are considered to be known

quantities and are called the inherent optical properties of the water.
The integration of any function f(g) = £(8,¢) = £f(u,s) over all_

directions §, as in (2.1), is expressible in any of the equivalent forms

n

2
[ ) aag) = [ |
0

0

n L

12
£(0,6) sinededé = [ [ £(u,) dude .
- 0

1

[24]

We separate the unit sphere = into upper, Z,, and lower, Z_, hemispheres

defined by

[{1]
m

{(u,0): 0 <u<1l1l,0%<¢ < 2%}

(1]
m

{((u,9): -1l <u<0, 0<¢ < 2n} .

In a similar fashion we will often use a "+" or "-" superscript as shorthand

notation to indicate quantities whose § vectors are in the respective Z, or =

hemispheres. Thus, for example, we have the upward radiance N+(y;§) = N(y3&)

when £ ¢ £, and the downward radiance N (y3£) = N(y;E) when § € E_.

Equation (2.1) can be placed into a more convenient form for numerical
work by noting (from simple plane-parallel medium geometry and our cﬁoice of
geometric depth ¢ as positive downward) that dr = -d¢/u. Here r and g are
both interpreted as physical distances, in meters. If we define an increment

of optical depth, dy, as

a(z)dz

dy

then dr = -dy/(ap) and (2.1) can be written



= -N(y;g) + ETIW [ N(y3g") oly;g'sE) dacg") (2.2)

for x <y < z and £ € Z. Henceforth the depth variable y will be interpreted
as optical depth, which is nondimensional. The Natural Hydrosol Model uses
the optical depth y as its depth variable, since it is the optical depth which
summarizegvmost efficiently the depth behavior of the light field.

In the absence of scattering, ¢ = 0 and (2.2) can be immediately
integratéd to obtain a simple law of exponential decrease of radiance with
optical depth. However, in natural hydrosols, scattering processes are of
fundamental importance, and the integral in (2.2), which embodies the
phenomenon of '"'space light" in underwater environs, must be treated with great
care. The scattering function o(y;£'3£) describes how strongly photons at
depth y initially traveling in direction ' are scattered into direction £.
For directionally isotropic media, the directional dependence of o rests only
on the angle between £' and £, and not upon their absolute directions. Thus

for the Natural Hydrosol Model we have, for various convenient forms of

notation:
olysg'36) = alysu',0'5u,9) = olysg'-g) = alys¥) , C(2.3)
where
L.
cosp = £'-£ = u'u + (1-u'2)*? (1-u2)* cos(¢'-¢) (2.4)

defines the scattering angle ¥, 0 < § < n, This simplification of o will have
an important influence in the choice of numerical solution procedures.

Without loss of generality, and in a convenient contracted notation, we
can write o as the product of the volume total scattering function, s(y), and

the phase function, p(y;¥):

10

-




alysv) = s(y) plysw) ,

where we have defined

plys¥) = o(ysw)/s(y) (=

p(ysg';e) =

§2

P(Y3_' '5) = P(Yh{' 9¢' ;u,(b))

and where the volume total scattering function is defined by

n

s(y) = 2n | a(y;¥) siny dv
o

(=

lll‘—ul

o(y3£'38) da(g)) ..

It follows from (2.6) that the phase function must satisfy

n

2% [ p(y3¥) sinv dy =1
o

for any vy,

or returning to the full (u,4) notation,

1 2%

[ ] plysu',e'su,6) dude = 1

-1 0

(

p(ysg

ne—

';£) da(g))

(2.5)

(2.6)

(2.7)

for any y, u' and ¢'. The volume total scattering function s(y) thus is a

measure of the overall amount of scattering, and the phase function p(y;¥)

contains the information about the shape of the scattering function.

Substituting (2.3) and (2.5) into (2.2) gives

dN(y;§)
dy

Xx<y<=<z

-
-
-

¥
™

-

~u ——— = -N(y3E) + w(y) [ N(y3E') p(y3E';E) da(g')

11

(2.8)



§2

where w(y) = s(y)/a(y) is the scattering-attenuation ratio or albedo of single
scattering. This ratio satisfies 0 < w(y) < 1 and is a measure of the
relative importance of scattering and absorption processes in the water.

Equation (2.8) is the basic equation of the Natural Hydrosol Model.

b. Boundary Conditions at the Water Surface

At the random upper boundary of the water, downward radiance incident
from the sky onto the water surface is partially reflected back to the sky and
‘partially transmitted tﬁrough the surface into the water. Moreover, upward
radiance incident from the water onto the underside of the water surface is
partially reflected back to the water and partially transmitted through the
surface into the air. These processes, after time or ensemble averaging, are

expressed by the pair of equations (cf., Preisendorfer, 1965, p. 123,

Eq. II):*
N(x3E) = | N(a3g') tla,x3E'3E) da(g')
+ [ N(x3g') r(x,a3g';g) da(g') , £ e =_ (2.9)
E#
and
N(a3g) = | N(x3g") tlx,a3g';5) da(g')
s
+ [ N(a,g') r(a,x3g';g) daCg') , ges, . (2.10)

* Equations (2.9) and (2.10) are instances of the interaction principle for
surfaces of plane parallel media. Eq. II of the cited reference allows us
to write down (2.9) and (2.10) in general, on the grounds of linearity of
radiative transfer processes. However, in any specific application of
Eq. II, one must actually determine the numerical values of the r and t
functions. This is the task of the procedure in §9, below.

12

e+ b et . A
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The r and t functions describe in averaged form how radiance is reflected and
transmitted by the boundary.* In particular, in the first term on the right
hand side of (2.9), t(a,x;£';E) determines how much of the downwafd radiance
N(a3g'), incident on the upper surface at y = a along direction £' € 2_, is
transmitted through the surface into the water at y = x along direction
E € 5_. Likewise, the second term on the right side of (2.9) shows how much
of the upward radiance N(x;£'), incident on the lower side of the surface at
y = x along direction §' ¢ =, is reflected back into the water along
direction £ € 5_. Similar comments hold for the terms of (2.10), where ﬁow
upward radiance is being transmitted through the surface from the water side
to the air side. Note the reversed (x,a) notation in t(x,a3g';g) and the
reversed hemispheres of E' and £, relative to the transmission term of
(2.9). Likewise in the second term of (2.10), downward radiance from the sky
is being reflected back to the sky by the water surface. The order of the
(a,x) and (x,a) arguments identifies the four distinct r and t functions of
(2.9) and (2.10), which shows our use of the depth conventions of Fig. 1.
When computing the light field in the hydrosol, these reflectance and
transmittance functions must be known. For certain special cases, such as
that of a perfectly calm sea surface, the r's and t's are available in
analytic form. However, in the general case of a wind-ruffled, anisotropic
sea surface, the linear interaction principle notwithstanding, the
determination of the r's and t's is a relatively difficult task. Later in
this study we will show (in §9) how the reflectance and transmittance

functions can be numerically estimated for wind-blown water surfaces using

* For an alternate approach to the random surface's effect on the light field

at and below the surface of a natural hydrosol, see H.0., Vol. VI,
secs. 12.10-12,17.
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geometrical optics, quad averaging, and suitable constructions of random

surfaces.

C. Boundary Conditions at the Water Bottom

A pair of equations analogous to (2.9) and (2.10) can be written for an
arbitrary lower boundary. However, the assumptions of the Natural Hydrosol
Model lead to lower boundary conditiohs which are much simpler than those of
the surface. Since there are no light sources below the lower boundary, there
is no radiance incident on the lower boundary from below, and therefore the

transmission term may be omitted. Thus we have only

N(z3g) = [ N(z38') r(z,b3E"3E) da(g') , & ¢ =, (2.11)

which shows how downward radiance incident on the lower boundary is reflected
back upward into the water. There is no need for an equation giving N(b3E),
£ € 5_, corresponding to (2.10), since we are not concerned with finding the
light field below the bottom (although we will find the emergent light field
above the surface via (2.10)).
Either of two types of bottom boundaries can be modeled by the Natural

Hydrosol Model. The first is a matte bottom, which represents for example a
sandy or silty lake bottom. For a matte surface, the reflectance function is

(H.O., VOl. II, pc 215):

! (2.12)

=l|'1

[}
=
-

t(z,b;_';_E_) = t(z,b;g',i' ;292) ==

where r_ is the irradiance reflectance of the matte surface, 0 < r_ < 1., Note

that u' < 0 since §' € Z_ in (2.11). We see from (2.12) that radiance

14
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incident on the matte bottom is eqﬁally reflected into all directions
g = £(u,9), independent of the incident azimuthal angle ¢', in accordance with
our assumption of an isotropic lower boundary.

The second type of bottom boundary is a plane at level z. Bélow this
plane is an Opt§ca11y infinitely deep water body, in which the optical
properties of the water have a specified variation with depth. In this case
r(z,b3E';E) gives the reflectance at depth z of the water body due to the
upward scattering of downward radiance at all depths in the entire water body

below level z. An appropriate form of this reflectance is developed in §l0.

d. Discretization of the Model Equations

Equation (2.8) and boundary conditions (2.9)-(2.11) constitute the
continuous geometrical form of the Natural Hydrosol Model (NHM). The word
"continuous'" refers to the formulation of the model as an integrodifferential
equation in which the direction variables 6 and ¢ may take any real values in
their allowed ranges, and the term "geometrical" refers to the setting of the
equations in the physical space suggested by the plane-parallel geometry of
the water body. However, in order to solve the NHM equations on a digital
computer (with finite storage capacity), we have decided to diécretize the
equations so that only a finite number of radiance directions need be
computed. This discretization process is the subject of the next sectionj the
result is termed the discrete geometrical form of the NHM. Furthermore, it is
numerically advantageous, for the reason explained below, to recast the
discrete geometrical NHM into a spectral form, termed the discreté spectral
NHM. This final formulation of the NHM is solved for a finite set of discrete
spectral amplitudes. These amplitudes are then used to compute the discrete

geometrical radiances, which are the final output of the numerical model. 1In
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the limit of infinitely'fine resolution in our chosen discretization process,
these discrete geometrical radiances approach the continuous geometrical
radiances which are in turn the solutions of the continuous geometrical
equations. Note that the word "spectral" now, and henceforth, refers to the
Four@er decomposition of the azimuthal angle, and not to the wavelength of
light.

Before proceeding with the discretization operations, it is worthwhile
considering the theoretical and numerical impliéations of two available paths
which lead to discretized model equations. The path briefly sketched above is
shown as the right hand branch in Fig. 2. The discretizaﬁion process consists
of first partitioning the unit sphere Z into a finite number of subsets
bounded by lines of constant u and constant ¢. These subsets are termed gquads
and can be visualized as regions bounded by latitude and longitude lines on a
globe (cf. Fig. 3 below).* After defining these quads, the discretization
process consists of integrating all model equations over the various quads,
where "integration over a quad" means integrating over all directions E such
that § is within the solid angle subtended by that quad. The discretization
1is thus a directional averaging of the continuous equations, after which, for
example, a continuous radiance N(y;§) is replaced b} a discrete radiance
N(ysu,v), where (u,v) are the discrete integer indices labeling quad Q_,.
N(yj;u,v) is the average of N(y;g) as g varies over Q . The model equations

of level 2 in the right-hand branch of Fig. 2 turn out to be a set of coupled

* This intuitively simple procedure generalizes the classical partition of the
unit sphere £ into just two subsets Z, and £_, the upper and lower
hemispheres of directions about each point of the environment, and which
yielded the classical two~flow theory of light. For an initial exploration
of this generalization see H.0., Vol. V, pp. 57-61 and H.O., Vol. IV,
pp. 97-103. It is perhaps of interest to note that this procedure returns
to and completes a numerical solution program outlined along the present
lines 20 years ago (cf. Preisendorfer, 1965, footnote, p. 204). Modern
computers now allow that program to be completed and widely applied.

16



§2

Continuous, Geometrical
Model Equations

Level |

/

Fourier Series Analysis
(Exact)

Infinite, Discrete, Spectral

~

Directional (Quad) Averaging
(Information Loss)

Finite, Discrete, Geometrical

Model Equations Model Equations 2
Series Truncation Fourier Polynomial Analysis
(Information Loss) (Exact)
Finite, Discrete, Spectral Finite, Discrete, Spectral 3
Model Equations Model Equations
Solution of the Finite, Solution of the Finite,
Discrete, Spectral Equations Discrete, Spectral Equations
(Exact) (Ex[ct)
Finite, Discrete, Spectral Finite, Discrete, Spectral 4
Amplitudes - Amplitudes
Partial Fourier Synthesis Fourier Polynomial Synthesis
(Exact) (Exact)
Continuous, Geometrical Discrete, Geometrical 5
Radiances Radiances
Limit of Infinitely Many Limit of Infinitely Fine
Terms in Spectral Sums Directional (Quad) Averaging
Continuous, Geometrical 6

(“True”’) Radiances

Figure 2.--Two paths leading to a discrete spectral model.

right-hand path.
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ordinary differential equations with respect to depth y for a finite number of
discrete, or quad-averaged, radiances. It is important to note that any loss
of resolution, or realism, of the present numerical model when compared to
nature, occurs in the quad—averaging level of the discretization piocedute.
The Fourier polynomial analysis leads to an uncoupling of the equations over
azimuth space, without loss of information. This permits a savings in
computational effort when handling reflectance and transmittance matrices.
The remaining steps of the solution procedure eventually yield a set of
discrete geometrical radiances which are exact solutions of the discrete
geometrical model equations. How closely these solution radiances correspond
to the "true" solutions of the continuous equations depends only on how fine
is the original partitioning of the unit sphere Z into quads. The loss of
model accuracy thus has an easily visualized, geometrical origin, and the
discrete solution radiances are readily interpreted as averages of the "true"
continuous radiances.

An alternate approach to obtaining a finite set of model equations is
shown as the left hand branch of Fig. 2. In this approach, which goes back to
the early work of Eddington and of Jeans (1917), the continuous geometrical
model equations are first Fourier analyzed over direction space using .
spherical harmonics to find an infinite set of equatiqns for the discrete
sbectral radiance amplitudes. No loss of accuracy occurs in this level of the
reformulation. However, the infinite series in these spectral equations must
be truncated at some finite value in order to obtain a finite set of coupled
ordinary differential equations for the spectral amplitudes that is amenable
to numerical solution. It is this truncation which introduces a loss of
accuracy into the numerical model, particularly in the hydrologic optics

setting which has volume scattering functions that are highly peaked in the

18




52 .

forward direction; a faithful representation of o(yjE';E) requires very many
spherical harmonics to be retained by the model. The solution radiances of
level 5 on the left branch in Fig. 2 are now exact solutions of the truncated
model equations; these radiances themselves are continuous functions of the
a;imuthal angle ¢. How closely the solution radiances correspond to the true
radiances depends only on how many ﬁerms were included in the truncated
series. Although the solution radiances are easily interpreted as
approximations of the true radiances, the loss of model accuracy due to series
truncation at the spectral equation level is not as easily visualized. It is
for this reason that in this study we adopt and explore the potentialities of
the right hand path of Fig. 2 as our solution procedure. The primary goal is
the form of the local interaction equations, (5.29), below).

It may be noted that the left branch of‘Fig. 2 can also lead to locgl
interaction equations of precisely the form (5.29). This means that the
solution procedures of §6 and 7 are also available for exploration of the
numerical road starting out along the Eddington-Jeans (i.e., the left) path of
Fig. 2. Indeed, the first rudimentary form of this approach is due to
Chandrasekhar (1950) building on an insight of Ambarzumian (1943).

The next several sections of this report give the mathematical details of

the various steps outlined above and in the right branch of Fig. 2.
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3. DIRECTIONAL DISCRETIZATION OF THE MODEL EQUATIONS
We now address the mathematical details of the directional, or quad,

averaging of the model equations.

a. Partitioning the Unit Sphere

For our purposes we partition the unit sphere of directions, Z, into
quadrilateral domains called quads, and into polar caps. A quad is bounded by
circular arcs of constant p (or 8) and circular arcs of constant ¢. The polar
caps are circular domains centered on the two poles of the sphere. Figure 3
illustrates a partitioning of I by means of 9 circles of constant u (4 in the
upper hemisphere, 4 in the lower hemisphere, and the equator) and by 20
semicircles of constant ¢. Thus there are 4 x 20 + 4 x 20 = 160 quads, and
two polar caps. The notation "qu" denotes the quad indexed by the pth u band
and the qth ¢ band, where p and q are numbered from a reference quad chosen
for convenience. We are free to center the q = 1 row of quads on the ¢ = 0,
or downwind, direction as shown by the wind-oriented i~j-k coordinate system
in Fig. 3. The figure also shows two directions, £' and E, respectively
belonging to two different quads, QfS = Q1,4 in Z_ and qu.= Q3’5 in Z,. Note
that the solid angles Q.

and @ . associated with quads Q. and Q,, are in

] v

general unequal in size.

Let the number of quads in the p-direction be M (counting polar caps) and
let the number in the ¢-direction be N (we have M = 10 and N = 20 in
Fig. 3). Furthermore, let M and N be even, i.e., of the form M = 2m and
N = 2n and, as will be convenient later (cf. paragraph £, below), let n itself
be even. This restriction to even M and n values represents no significant
loss of generality in the numerical model, but greatly simplifies the analysis
formulas. We also require that non-polar cap quads have equal angular widths

A¢ in the ¢~-direction, thus
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Then the centers of the hon—polat quads Q. have the ¢ values
o, = (v-1)4¢ ’ V=1,e00y2n (3.1)

The azimuthal angle ¢, is not defined for the polar caﬁ quads (just as ¢ is
' not defined at the poles, 8 = 0 and 6 = n, in a spherical coordinate
system).

The angular size Au (or A8) of the quads in the u direction can be fixed
as desired. There is no requirement that the quads in different u-bands
defined by pairs of neighboring u circles have equal Au values. One simple
scheme for defining the u-bands is to let Ay, = Au = 1/m, and thus have quads
of equal u-size and hence of equal solid angle (except for the polar cap
quads) 2,y = AuuA¢v = Audd, since A¢v = w/n. With this choiceithere are
2(m=1)2n non-polar quads of size 2., = (1/m)(n/n) and two polar cap quads of

size @ = (1/m)(2w), which total to the required 4n steradians in 3. If we

set
Ay =—L——=Au for u = 1,...,m-1
u - (m=1)2n+1 ’ ’
and
LT Au for the polar cap, u = m
m 2n ’ ’

then all quads, including the polar caps, have the same solid angle
ag = AQ = 2n/[(m-1)2n+1]. This equal solid angle partition is shown in

Fig. 4a for m = 10, n = 12,
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The equal solid angle partition may be inconvenient for some
applications, since the quads near the pole cover a large 8 range and thus,
for example, may cause an unacceptable loss of 8-resolution for solar
positions near the zenith or lines of sight directed at the nadir. Another
convenient choice of u-bands is to use equ&l A9 values, as shown in Fig. 4b
for m = 10, n = 12, Here the 6-resolution is the same everywhere (the polar
caps have a half-angle of A8/2), but of course the quads in different u-bands
have different solid angles 2,,c A quad resolution of m ~ 10, n ~ 12 has been
found to be reasonable for use in debugging and in production model runs where
extreme accuracy is not required.

Some applications of the Natural Hydrosol Model may require even finer
directional resolution. For example, changing the sun's elevation by only a
few degrees may have a large effect on the subsurface light field when the sun
is near the horizon. Figure 4c shows a higher resolution, equal A¢ partition
of £ with m = 23 and n = 30, so that A8 = 4° and Ap = 6°. Grids of this
resolution are currently (1988) at the limit of computational feasibility.
Figure 4d shows an m = 10, n = 12 grid with an ad hoc A8 selection which gives
A6 = 2° near the horizon and A6 = 20° near the poles.

It can be noted that a grid for which the solar disk, which subtends an
angle of about 0.5°, fills one quad of size A8 = A¢ = 0.5° would require
m = 180, n = 360. Since computation and storage requirements of the model are
generally proportional to m2n2, such a grid would require nearly 300,000 times
the computer effort relative to the m = 10, n = 12 grid. Such resolution is
far beyond current general-purpose computer capacities (1988). Such

resolution would, however, at present not be beyond the capacity of dedicated
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computers that could be constructed for specific radiative transfer
integration tasks (cf., H.O., Vol. 1, p. 208).*

In our later development we shall have frequent need to evaluate sums of
discrete functions, f(p,q), defined on the quads qu of =. Thus "2 z f(p,q)"
will denote a sum of f(p,q) over all quads and polar caps in the uﬁig sphere
Z. Henceforth, unless otherwise noted, the polar caps will be considered as
special quads. We shall also occasionally write sums over all quads as
separate sums over £, and Z_, and we shall sometimes add a "+" or "-"
superscript to the summand as a reminder of which hemisphere is refetence& by

the sum, as for example in

7Y fpd =YY £ (p) + YY) £ (p,q)
P aq Pa | P

[¢1]
o’

(qu in (qu in E)) (qu in =_)

Here "(qu in 2)" means "all quads qu of £ are to be summed over."

"(qu in €.)" is interpreted as "all quads qu of 3  are to be summed over"”,
etc. For ease of indexing in the computer code, we also let p = 1,2,...,m
label the u-bands of the quads qu, regardless of whether qu is in g, or 2_3
p =1 is the row of quads nearest the "equator" and p = m refers to the polar
cap quads. Since there is no ¢ dependence for the polar caps, these “quads"

are always special cases. The value of f(p,q) at a polar cap will then be

denoted by "f¥(m,-)". Thus we write

* Another possibility would be to produce a variable-grid partition of =
around directions where there exists a high radiance gradient. In this way
the grid would be fine around the sun direction and become progressively
less fine away from that direction. This would, however, require a

revision of the spectral decomposition of the present method.
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m=l 2n . m=1 2n _ _
YV fpyd = § § £(py@) ¢+ £ (m)+ §T 7 £ (p,q)+ £ (m,-) .
Paq p=l q=1 p=1l q=1
(Q_ in 2) (3.2)

Pq

Sums over Z or Z, will always be computed as shown by the explicit notation of

(3.2).

b. Quad-Averaging

Let "F(y3E)" denote any function of depth y and direction . The quad-

average of F(y3g) over any quad Q,, in Z is defined by

Flysu,v) = 31- [ Flyig) de(g) %—— [[ F(ysu,s) dude . (3.3)

uv v
Q\JV u qu

The quad-averaged quantities are the fundamental building blocks of the
numerical Natural Hydrosol Model. Owing to the "smearing out" of the
continuous F(y;E) by the directional averaging in (3.3), the numerical model
cannot resolve features of the radiance distribution which subtend solid
angles smaller than @ . In a manner of speaking,.che quad-aQetaging brocesé
replaces the clear unit sphere (with perfect resolution) by a polyhedron of
frosted glass windows; each window (i.e., quad or polar cap) homogenizes the
radiance distribution within that window. Note, however, that the Natural
Hydrosol Model is capable of arbitrarily fine resolution in the vertical
direction down through the body of water, so long as the number of depths vy,
where a solution is desired, remains finite.

The basic step of the quad-averaging procedure can be represented as the
formal replacement of a function F(y;u,¢), defined on the unit sphere Z, by
the following linear combination F(y;u,6) of its quad averages F(y;p,q):
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Flysu,0) = ) 7§ Xpq(Hs8) Flysp,a) , (3.4)
P q 1
a<y=<b
(u,0) € =
where
1 if (u,0) € Q
qu(u’¢) = { . Pq
0 if (u,d) ¢ qu ’

" L
and where z z denotes a sum over all quads and caps qu in the unit sphere
P q -
3, evaluated as shown explicitly in (3.2). Observe that F(yju,¢) is constant

as (u,0) varies over Q__, and is of magnitude F(y3p,q), even though the

Pq
original F(y3u,4) in (3.3) may have variedvover qu. This follows from our
interpretation of F(yju,v) as an average and emphasizes the consequence of the
directional averaging operation. This same quad average over Q,,» namely
F(ysu,v), is obtained from (3.3) if F(y3;u,¢) is used in place of F(yju,s)..
That the step function form F(y;u,¢) of F(y;u,¢), given by (3.4) is consistent

with (3.3) in this sense, is verified by direct substitution of (3.4) into

(3.3). Thus (3.3) becomes

QL [] Flysu,0) dude = 9—1— g]‘ $ 5 x_ (u,0) F(ysp,q)| dude
P q »

uv qu uv av Pq

n
o~

z F(ysp,q) al— I x_ (u,0) dude .
Pq
1 uv 'qu

F(ysu,v)

That is, we have
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Flysu,v) = El- I F(ysu,0) dude (3.5)
uv qu

a<ys<b

qu in E

The interchange of summation and integration in the derivation of (3.5) is
possible since only qu(u,¢) depends on (u,¢). But qu(u,¢) is non-zero
(namely of unit magnitude) only when (u,¢) € qu, so the integral over qu is

non-zero only when quad qu is quad qu. In terms of the Kroneker delta

symbol,

1 if k=20
sk = | (3.6)

0if k20,

the second line of the derivation leading to (3.5) becomes

1
LI FGyspa) g— 6 _ 8 _ [ dude
p-u q-v.
Pq uv Q.
= F(ysu,v) 1. Q@ = F(y3u,v)
YU, - uv Ysu, ’
uv

where we have noted that the solid angle of quad Q,, is just

uv

a = [[ aude . (3.7)
Q

uv

Thus (3.5) and (3.4) constitute a transform pair which respectively carry a

function of (u,$) into a function of (u,v), and conversely.
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c. Discretization of the Radiative Transfer Equation
We are now prepared to apply the quad-averaging operator (3.3) to the
entire radiative transfer equation (2.8); the result will be the quad-averaged

version of the equation. Eq. (2.8) written in terms of (u,¢) is

-u -dN(d;u'L¢)' = =N(y3u,0) + wly) [ du'de' N(ysu',e') pCysu',0"'3u,0) (3.8)

where x < y < z and (u,¢) ¢ E. Let us now consider, term by term, the effect

on (3.8) of quad-averaging.

(i) The derivative term

On the left hand side of (3.8) we have

}
—
a

=

Logqr Eu dN(pu,«b_TJ dudo = [ d¢E" du(z;u,cﬂ
Q dy 2d dy
uv v

uv uv Ay
uu(Z) ¢,(2) _
=== [ a ] d¢Eu dN(ysu,e) 3L “’:)]
uv uu(l) ¢v(1) y

(3.9)

where u (1), u,(2) and ¢,(1), ¢,(2) are the bounding u and ¢ values,
respectively, of quad Q,,. Thus Au, = u,(2) - u, (1) and
86, = ¢,(2) - ¢,(1). The continuous radiance N(yju,¢) is replaced by its

approximating step function form using (3.4), so that (3.9) becomes
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uu(Z) ¢v(2)

1 dN(ys )
T du [ dof-u § ¥ x_ (u,0) ——ZLP-LS—:|
Sav W (1) ¢ (1) pq M dy

u v
; ) uu(Z)
= . 1 dN(ysu,v e u du
qu dy v uu(l)
- - _1 dN(y3u,v) _
- 300D 5, H[42(2) - u2(D)]

uv

Now nuv = AuuA¢v and

M[H2(2) - w211 = H0u (2) + u (D1[6,(2) = u (D] = 580,

u

where the overbar denotes the average pu value over the quad or polar cap.

Thus we have the result

1 _. dN(y3u,¢) _ _— dN(y3u,v)
E é_r [Ll ——H dude = }.lu —Ldvz—- o (3.10)
uv

Henceforth we will drop the overbar, and "uu" will always denote the average u
value over the qu quad or polar cap. Observe that at this stage of the
deQelopmen;s ¥, can take on negative as well as positive values, just as can
its continuous counterpart p. Thus if Qv is in Z_, then ¥, <0, and if qu
is in £, then B, > 0. Observe that the uu's come in signed pairs by virtue
of the same decompositions of =, and Z_ into quads. (Later, in (5.2) and

beyond, the L will be restricted to their positive subset.)
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(ii) The attenuation term

The first term on the right hand side of (3.8) yields, by definition, the

quad-averaged radiance, -N(y;ju,v).

(iii) The scattering term

The integral on the right side of (3.8) is quad-averaged as follows:

ﬁl— If [E(y) I NCysu',0") p(ysu',0'5u,0) du'de’| dude
uv =
uv

= gizl II dud¢{2 Y I du'de’ N(ysu',e') p(y;u',¢';u,¢)}
uv  Q rs Q

uv rs

= :( ) II dudd z z II du'de’ Z Z x. (u',¢") N(y;p,q) p(y;u',¢';u,¢)}.
uv Q r s Q P q Pq
uv

In the first step above, the u'-¢' integration over all directions @ has been

rewritten as a sum of integrations over all quads comprising the unit

sphere. In the second step, the radiance has been replaced by its approximate
step function form over each quad. Owing to the step funcﬁion qu(u',¢'), we

have a contribution to the u'-¢' integral only when (p,q) = (r,s), which

leaves just

8) 1 aude § § N(ysr,s) [ du'de’ plysu',e’su,e)
uv qu rs rs

w(y) ¥ ) N(ysr,s) QL [T dude [] du'de' plysu',e'su,9)

r s uv
QUV Q!‘S

w(y) z z N(y;r,s) p(ysr,s|u,v) ,
rs

where we have defined the gquad-averaged phase function as
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plysr,s|u,v) = QL JI dude [[ du'de' plysu',"3u,s) (3.11)
uv Q Q -

x<ysz uv rs

Qrs and qu in £ or E_

8,v = 1,...,2n

Note that p(y?r,s|u,v) is well defined even if Q. °r Q,, is a polar quad.
Although the discrete azimuthal angles ¢, and ¢, are not defined for the polar
quads, the continuous azimuthal angles ¢' and ¢ are defined within the polar
caps, except at the poles themselves (u' = *1, u = *1), so that the
integrations shown in (3.11) can be performed. Following the notational
convention for polar cap values in (3.7), if Q.g °r Q,, are polar caps, we
write p(yjr,s|u,v) respectively as "p(y;m,-|u,v)" or "p(y;r,s|m,-)". If Q.
and Q,, are both polar caps, we write* "p(ysm, - |m,-)".

Collecting the results of (i)-(iii) above, we obtain the gquad-averaged

radiative transfer equation:

“u, E!SX%%L!l = -N(y3u,v) + w(y) Z Z N(y;r,s) p(ysr,s|u,v) ©(3.12)

r s

* How these singular cases are handled in a computer program is explained in
§l2.
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where z Z represents a sum over all quads Qrs in £, evaluated as in (3.2). We
r s

now have a finite set of ordinary differential equations with respect to

optical depth y for the finite number of quad-averaged, or discrete, radiances

N(yju,v). Equation (3.12) is thus the discrete geometric form of the

continuous geometric eq. (2.8).

d. Symmetries of the Phase Function

As discussed in §2a above, the isotropic volume scattering function and
hence the phase function p(ys3u',¢';u,4) depends at each y only on the angle
between the directions (u',¢') and (u,4). The basic symmetry of
plysu',0'5u,0) = p(y;g';g).is then given by the following equality

ply;£';8) = p(ys5y3E,) (3.13)

which holds whenever

where, as in (2.4)
] ] ] !i ;i ‘ ]
'8 = u'u + (1-u'2)° (1-u2)* cos(o'-9) .
There are four immediate corollaries of (3.13) which are useful in practice.

Thus we have for p(y;E';g),

1) Invariance under interchange of u',u:
plysu’',0"3u,0) = p(ysu,9'su',9) (3.13a)
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2) Invariance under interchange of ¢',¢:

p(ysu',0'3u,0) = p(ysu’,05u,0") | (3.13b)
3) Invariance under simultaneous sign changes of u',u:

pCysu',0'5u,0) = plys=u',6'3-u,6) (3.13c)
4) Invariance under simultaneous shifts of ¢',¢; i.e., for all aﬁgles a,

p(ysu',0'5u,6) = pQysu',¢'+asu,¢+a) (3.13d).
As a special case of 4), set a = =¢'. Then with the help of 2),

p{ysu',0'3u,0) = p(ysu',03u,0-0")

p(ysu’,05u,-(6=0")) ) (3.13e)

This shows that for fixed y, u', and u, p(yju',03u,6-¢') is an even
function of ¢-¢'. This observation is a basis for the cosine representation
of p(ysu',0"3u,¢) (cf. (4.11), (3.13k), below, and (5.5a)) which we shall use
in the reduction of the equation of transfer to spectrai form.

In what follows we shall use properties 2)~4) to reduce the complexity of
the spectral form of the equation of transfer. The only property not used is

1) which is a form of reciprocity property (full reciprocity is obtained by

combining 1) and 2)).
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The preceding symmetries are inherited by the quad-averaged form of the
phase function. To show these symmetries succinctly we adopt the following

conventions. If Qs is in 2  or ¥_, with r = 1,...,m, then Q_ is in

r,s _ or

E,, respectively. More precisely, Q-r,s is the quad that is the mirror image,
in the equatorial plane of =, of the quad Qg Finally, shifting the
azimuthal index s in Qs by an arbitrary integer a produces a new quad Qr,s+a
| which is the quad qu where q = (s+a) mod(2n). 1In other words we find q by
dividing §+a by 2n and taking the remainder. A zero rgmaindet is identified
with 2n. Hence it follows that -s = (-s+2n) mod(2n) (see Fig. 5b, below, for
the case n = 12, Check, for example, that s+a = 2244 = 26 mod24 = 2 and that
~s = -2 = (~2+424) mod(24) = 22.) With these preliminaries, the preceding
symmetries of p(ysu',¢'su,¢) take the following forms in the quad-averaged

context of the phase function. Each of the following symmetries may be proved

by using the corresponding property 1)=4) in (3.11) and reducing the result to

the desired form.
Thus we have for p(yjr,s|u,v),
1)' Invariance under interchange of r,u:
p(ysr,s{u,v) = p(ysu,s|r,v) . (3.13f)
2)' 1Invariance under interchange of s,v:
p(ysr,s|u,v) = p(ysr,v|u,s) (3.13g)
3)' Invariance under simultaneous sign changes of r,u:

plysr,s|u,v) = p(ys-r,s|~u,v) (3.13h)
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4)' Invariance under simultaneous shifts of s,v, i.e., for all integers a,

p(ysr,s|u,v) = p(ysr,s+a|u,v+a) (3.131)

From 4)' and 2)' we find

p(ysr,s|u,v) = p(y;r,0|u,v-s)

p(ysr,0]|u,=(v-3)) (3.13j)

Since the working range of s and v is 1,...,2n, we can either replace 0 by 2n

in (13.3j) or using 4)' again, write the preceding equalities as

p(ysr,s|u,v) = p(y;r,1|u,(v-5)+1)

p(ysr,1]u,(s-v)~1) (3.13k)

e. Discretization of the Surface Boundary Equations
The surface boundary conditions (2.9) and (2.10) on the radiance field
are discretized in the same manner as the radiative transfer equation.

Consider, for example, (2.9):

N(x3u,0) = [ N(aju',') t(a,xsu',0"3u,6) du'de'

(3.14)

N(x3u'y0') r(x,a3u',0'5u,6) du'de’ , (u,¢) e =_ .

+
tn—,
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The left side of (3.14), when quad-averaged, yields by definition the quad-
averaged radiance. The first term of the right side of (3.14) becomes

—— [[ dude {f N(as;u',9') t(a,x3u',4"3u,6) du d¢}
uv Q

uv

== [[ dudes {Z Y [ du'de’ Z L Xpqn'»e") Wasp,q) t(a.x;u',¢';u,¢)}
Qv rs Pda

after rewriting the integral over Z_ as a sum of integrals over all quads Qg
in £Z_, and after replacing N(aj;u',$') by its approximate step function form

(3.4). The last expression can be reordered to get

Y11} Masp,q) {— [T dude {[] du'de' x_ (u',0") tla,x5u',0"5u,0) }
rspgq uv Q. Q Pa

rs

Observe that the u'-¢' integral involving Xpq integrated. over Q.. is non-zero

only if (p,q) = (r,s); so we have left just

z 2 N(a3r,s) {——— If dude [ du'de’ t(a,x;u',¢';u,¢)}
rs uw Q. Q

rs

= z z N(a3r,s) t(a,x3r,s|u,v) , . (3.15)
rs i
after defining the quantity in braces to be the gquad-averaged transmittance:

t(a,xsr,sfu,v) = == [ dude [f du'de' tla,xsu',e5u,0) (3.16)
uv Q Q
uv

rs
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This transmittance is therefore for the downward quad-averaged radiance
incident at level a of boundary X[a,x]. The second term on the right side of
(3.14) is treated in an exactly analogous manner to obtain a result
corresponding to (3.15). Collecting these results, we have the discrete

geometric boundary condition at level x of boundary X[a,x]:

N(xj3u,v) = 2 2 N(ajr,s) t(a,x;r,s|u,v) + 2 2 N(x3r,s) r(x,a3r,s|u,v)
r s rs

(3.17)

which holds at level x of X[a,x] for all quads qu in Z_. Note how the order
of a,x in t(a,x;r,s|u,v), for example, shows that the (r,s) pairs in the first

sum are over Q. in Z_, while Q¢ varies over £, in the second sum. A similar

equation is obtained from (2.10), namely

N(aju,v) = z z N(x;r,s) t(x,a;r,s|u,v) + z z N(aj3r,s) r(a,x;r,s|u,v)
rs r s

(3.18)
which holds at level a of Xfa,x] for all quads qu in Z

Zge
Just as in the continuous equations (2.9) and (2.10), the four transmittance
and reflectance functions in (3.17) and (3.18) are considered known as regards
the solution procedure for the radiative transfér equation. We shall consider
in §9 the numerical computation of these quantities.

We observe that the continuous transmittance and reflectance functions in
(2.9) and (2.10) have units of steradian~!, whereas their discrete forms seen
in (3.17) and (3.18) are dimensionless. The continuous r's and t's are
densities, showing how much incident radiance 1s reflected or transmitted per

steradian. The discrete r's and t's are integrated densities, showing how

much quad-averaged radiance is reflected or transmitted between particular
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quads Q.. and Q, . The magnitudes of the discrete forms depend explicitly on
the solid angles of the quads, as is evident from the defining equation
(3.16).

The quad-averaged phase function of (3.;1) and the quad-averaged surface
reflectances and transmittances of (3.16) all have the same mathematical form,

namely f(r,s|u,v) where we write in analogy to (3.11):

£(r,s|u,v) = 6—1— JT dude [] du'de' £(u',0'5u,0) (3.19)
uv Q Q
Qrs’ qu in £ w i

Here f(u',4';u,6) is any phase, surface reflectance or surface transmittance
function. Corresponding to f(u',¢';u,¢), there is a step function

t(u',4'3u,4), which we use formally to replace £(u',$¢'3u,4), namely

Eu'ye'5u,0) = L1 1L x (u'he') x (uy0) £££$515131 (3.20)
rsuv ' ‘ rs

(u‘ ’¢'),(u,¢) € =

As can be verified, substituting f(u',0'3u,6) into (3.19) we obtain
f(r,s|u,v). This is comparable to the verification of (3.3). Therefore,
relations (3.19) and (3.20) are a transform pair which carry a function of two
directions back and forth between the discrete and continuous representations.

Note that for any directions (u',4') in Q,, and (u,¢) in Quy? (3.20)

implies that

T’ 0 3u,0) = Eraslu,v)

a (3.21)
rs
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for all (u',¢"') in Q.. and (u,$) in Q,,. This result is also obtained
approximately from (3.19) if Q.  and @ are sufficiently small so that
f(u',4'3u,0) can be taken as constant over the quads Q. and Q,,. Once again
we see the implications of the quad-averaging operation on the directional
resolution of a physical quantity. Note also that if we wish to numerically
compare any two-directional quad-averaged quantity (e.g. r(a,x3r,s|u,v)) with
its continuous counterpart (in this case, r{a,xj;u',¢'3u,¢) for (x',9') in Q.
and (u,9) in qu), then the rule in (3.21) says we must first convert the
dimensionless, quad-averaged quantity f(r,s|u,v) into its approximate,

dimensional, continuous counterpart by dividing f(r,s|u,v) by Q.4

f. Symmetries of the Surface Boundary

The discussion of the previous section is valid for completely arbitrary
r and t functions. However the actual model of a wind-blown sea surface which
we adopt for the natural hydrosol model is based on a two-dimensional

probability distribution of the wave slopes in the form (cf., H.O0., Vol. VI,

p. 148):

2 2
p(cu,cc) = (21rcruac)'1 exp -3:(0—‘2’ + ;‘;—) . T (3.22)
u c

Here ¢ and z_. are the wave slopes in the upwind and crosswind directions,
respectively; and 03 = auU and oé = acU are the variances of f, and ¢_, where
U is the wind speed. p(¢ ,%_) is the probability density of occurrence of a
wave facet with slopes g, and L.» For unequal proportionality constants,

‘au * a., the wave slope distribution is anisotropic. Measurements indicate

that a = 3.16 x 10~3 sec m~! and a_ = 1.92 x 10-3 sec m~!, so au/aC = 1.65.

With ¢ = 0 chosen as in Fig. 1 to be the downwind direction, the distribution
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(3.22) displays the azimuthal symmetry of an ellipse with its major axis in
the upwind-downwind direction and its minor axis in the crosswind direction.

In order to exploit the elliptical symmetry of tﬁe water surface, recall
from §2 that a direction § = (£,,£,,£3) has the components §, = (1;u2)3 cosé,
E, = (l-uz)Li sing, £3 = p in the wind-based coordinate system. If a downward
directed light ray §' is reflected by a wave facet into the upward direction
g, then it follows from the laws of geometrical optics that the wave facet

must have the slopes

-(g,-£1)/(&,4~£3)

(al
"

[l
(]

-(g,-83)/(g,-€3).
(See Preisendorfer and Mobley, 1985 for a detailed development of these
relations.) Then the argument of the exponential in (3.22) can be written

1 (e,-g)2 (g,-€3)2
ol Tzt o2 Gk

Q'ﬁ
cNnjen
+
Q] &«
[ XN (e AN
|

g2

2 in2 24! in2a'
- ooryr {(1-u2)<°‘;§ 24 200 4 (1mpra)(SR 4 R0,
u c u c

L 1 ' P
- 2(1-u2)1(1-u'2)1(c°s¢o§°s° + 51“°0§1n° )}
u c

q(u',0's3u,0)

This function clearly has the symmetries
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q(u',0'5u,9) = qu',21-9"5u,21-¢) (3.23a)
= q(u',m=¢"'5u,71-¢) ‘ (3.23b)
= q(u',m+¢" s, 1+d) ‘ (3.23c)

for =1 £ u' €1 and -1 £ u €1, and for the azimuthal arguments in the ranges
0 < ¢' <27 and 0 < ¢ < 2r. These symmetries are associated with the
symmetries of an ellipse and are illustrated in Fig. 5a.

Since the symmetry properties of the reflected radiance are entirely
determined by the symmetry properties of the water surface itself, via the
underlying wave-slope distribution (3.22), it follows éhat r(a,x;u’,0"5u,6)
also obeys the elliptical symmetries of (3.23). Similar examination of the
other three possibilities for reflected and transmitted light leads to the
same elliptical symmetry properties of the ¢',¢ variables in r(x,asu’',¢'5u,4),
t(a,x;u',0’ ;u,@) and t(x,asu’',¢'su,9).

The symmetries of (3.23) in turn imply that &he quad-averaged

reflectances and transmittances given by (3.19) obey the corresponding

symmetries
f(r,s|u,v) = £(r,2n+2-s|u,2n+2-v) (3.24a)
= f(r,n+2-s|u,n+2-v) (3.24b)
= f(r,n+s|u,n+v) . (3.24¢)

for all Qrs and Q . in = and specifically for ryu = 1l,...,m and
s,v = 1,...,2n. The azimuthal arguments in (3.24) are computed modulo 2n, on
the range 1,...,2n. Figure 5b illustrates the symmetries (3.24) for the case

of 2n = 24 azimuthal quad divisions. The indexing of (3.24) is not as lucid
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Figure 5.-—Azimuthal symmetries of the reflectance and transmittance functions
looking downward at the air-water surface. Panel a represents the
continuous case, whose symmetries are expressed by (3.23). &' at ¢'
represents an incoming light ray, and § at ¢ represents the reflected or
transmitted ray. The four pairs of similarly drawn vectors all have the
same reflectance and transmittance. Panel b represents the discrete case
for 2n = 24. The symmetries are expressed by (3.24). s represents a
quad Qg containing incoming radiance N{yj;r,s) and v represents the quad
qu receiving the reflected or transmitted radiance N{yju,v). The four

pairs of similarly shaded Q. +Q,, quads all have the same quad-averaged
reflectances and transmittances.

43



§3

as the arguments of (3.23), owing to the azimuthal numbering of quads from 1
to 2n (instead of from 0 to 2n-1).* Nevertheless, a quad indexed by 2n+v is
the same as the quad indexed by v. For example, the quad indexed by 1 is the
same as that indexed by 2n+l. A moment's contemplation of Fig. 5b, moreover,
shows that quad s, centered at L is the symmetric partner, about the wind
direction, of quad 2n+2-s3, centered at ®on+2-g = 2wl- g

We also note in Fig. 5b that the directions ¢, = 7/2 (s = n/2 + 1) and
oy = 37/2 (s = 3n/2 + 1) are located at quad centers. Having quads centered
on the directions at right angles‘to thé wind (at ¢, = 0) enables us, in
applications of the NHM, to place the sun (or other incident light source) at
right angles to the wind if we wish to compare, say, the differences in the
radiance distributions generated by incoming solar rays parallel to and
perpendicular to the wind direction. This is our reason for choosing n
even. If n is odd, then the directions at %/2 and 3n/2 lie on the boundary
between two quads, which is not as cqnvenient.

The symmetries of (3.24) imply that the quad-averaged reflectance and
transmittance functions need be computed and stored for Q.  only in the "first
quadrant” of the unit sphere, i.e., for azimuthal indexes s = 1,2,...,E+1 only
(here is where it is convenient to have n even) and for r = 1,...,m: all
other possible values can be obtained from symmetry, as is easily seen in
Fig. 5b. Thus the elliptical symmetry of the wave slope distribution (3.22)
gives a factor of four reduction in the computation and storage requirements

involved with processing the r and t functions. However, as seen in (3.24),

the discrete indexing conventions are somewhat cumbersome. We therefore

* The numbering of quad azimuth indexes from 1 to 2n instead of from 0 to 2n-1
(as would be instinctively done by a mathematician) was dictated by Fortran
programming language restrictions at the time the associated computer code
was written,
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choose to retain the general notation "f(r,s|u,v)", with s and v running over
their full ranges s = 1,...,2n and v = 1,..;,2n, in equations such as (3.17)
or (3.18). The symmetry relations (3.24) will, however, be used at the

appropriate time to introduce simplifications in the spectral model.

g Discretization of the Bottom Boundary Equations

The bottom boundary condition (2.11), or

M(z3u,6) = ] du'de' N(z3u',s') r(z,bsu’,06"3u,6) , (u,0) ¢ 5,

is discretized in the same manner as the surface boundary conditions to obtain

the following result which holds at level z of X[z,b] for all Qv in 2.3

N(z3u,v) = 2 2 N(z3r,s) r(z,bjr,s|u,v) . (3.25)
rs

For a matte bottom, r(z,b3u',¢'3u,¢) is given in analytic form by (2.12)

which, when substituted into (3.19), gives
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r
r(z,b;r,s|u,v) = 9—1— .”‘ dude IJ. du'de' |- pa u'
uv qu Qrs
c ur(Z)
= - _-_ — ] L] (]
T Q 9uv A(t‘s I uidu
uv ur(l)

r
= - — 8¢ 5[u2(2) - u2(1)

L _

e —

= - ;: A¢; I ur(z) + ur(l) ur(Z) - ur(l)
r-
AN
Therefore,
r

r(z,b3r,sju,v) =

|
[}
|
=
0
-

(3.26)

.for Qrs in =

- and Q in 2,. It is to be noted that u. <0 since Qrs in =_.
Thus the matte reflectance is a positive-valued function, the magnitude of
which depends explicitly on the quad solid angle Q. q-

The matter of the evaluation of the air-water surface transfer functions
is considerably more complex than the bottom transfer function and will be
taken up in §9. Moreover, the reflectance of the lower boundary of a medium
resting on an infinitely deep water layer will be considered in §l0.

We have now arrived at level 2 of Fig. 2, in that we have developed a
finite set of discrete geometrical model equations for the quad-averaged

radiances.
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4. FOURIER POLYNOMIAL ANALYSIS
In order to recast the discrete geometrical equations into a discrete
spectral form, we need several results from the theory of Fourier analysis of
discrete functions. This section collects the needed formulas; théy will be

applied in §5.

a. Discrete Orthogonality Relations
We first present several formulas involving trigonometric functions whose
arguments are the discrete azimuthal angles ¢, defined in (3.1). Let

k,2 = 0,...,n. Then

=0 orn
’ 4 = 1,...,[‘1"1.

N s
© ° e

2n 0 if k
z cos(ke ) cos(l¢v) = 2n if k
v=1 v n if k

Using the Kronecker delta symbol (3.6), these results can be condensed as

2n

vzl cos(k¢v) cos(l¢v)

). (4.1)

. |
nC8 vy * Seeg * Sieg-2n

Likewise we have

2n 0 if k = ¢
z sin(kcv) sin(2¢v) = 0 if k=2 =0o0orn
V=1 nifk'—'l Y 1=1’.0',n—1
which can be written
2n
VZI sin(ke ) sin(ue ) = n(8, 0 " Spug ~ 6k+z—2n)' (4.2)

Finally we note that, for all k,% = 0,...,n,
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2n
cos(ke ) sin(2e ) = 0 . (4.3)
) v v

v=1

After application of trigonometric identities and (4.1)-(4.3), we obtain the

following formulas for k,2 = 0,...,n-1:

2n
vzl cos(k¢v) cosz(¢s-¢v) = n(5k+1 * Syt 5k+1-2n) cos(2¢s) (4.4)
and
2n
vzl 51n(k¢v) cosl(¢s-¢v) = n(&k_z - 6k+1 - 6k+1—2n) 51n(1¢s) . (4.5)

b. Fourier Polynomial Formulas
Let £, = £(4,) be any discrete function of the azimuthal angle ¢, where

the ¢,, v = 1,...,2n, are given by (3.1). Then f, has the Fourier polynomial

representation
n R .
£ = ) [£,(2) cos(ae ) + £,(2) sin(2s )] , (4.6)
v 9‘=0 v v )
v=1...,2n

where El(z) and fz(l) are the spectral amplitudes, which we shall determine
below. This is the formula by which we will transform the discrete
geometrical Natural Hydrosol Model into discrete spectral form. We shall see
that the number of values of the discrete function £, (namely 2n) is
determined exactly by n+l generally nonzero cosine terms and n-1 generally

nonzero sine terms in (4.6). The cos(2¢v) term with £ = 0 gives a
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constant, fl(O), which is the average of £, over v =1,...,2n. Moreover, the
cos(né,) term gives the "two-point oscillation," the wavelength of which is
286 = 2n/n. This shows that the shortest resolvable wave in the Fourier
representation is directly determined by the fineness of the ditecﬁional
resolution A¢ in the quad-averaging. Using the representation (4.6) for £,
which exactly reproduces f , will introduce no further loss of radiance detail
in the azimuthal direction when N(y;u,v) replaces £,- Since sin(2¢v) is
identically zero if £ = 0, or & = n, the amplitudes £,(0) and #,(n) may be
arbitrarily chosen. We therefore will define £,(0) = £,(n) = 0, which will be
convenient for bookkeeping purposes in the computer code.

The cosine amplitudes fl(z) are determined by multiplying (4.6) by

cos(ké ) and summing over v to find

v=l =1 v=

2n n 2n " n 2n
) £ cos(ke ) = Y | ¥ cos(2e ) cos(ke )| + Y OB sin(24 ) cos(ke )| .
£=0 v =0 1

Applying the orthogonality relations (4.1) and (4.3) yields

2n
2 f cos(ke )
v v

v=1

n
9.;0 (0008, 0 * Sy * Siapo2n]

B (In(8y, + 1+ 8 9q]-

Replacing the index k by £ and defining

2n 1f & OQOor 2 =n

e, =n(l +65, +65, )= (4.7)
. 24 24-2n { n if ¢ l1,.0.,n-1

we can write
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f cos(2e ) (4.8)
v v

Expanding (4.8) gives

2n
£,(0) = L z £ (the average of f )
2n & v v
v=1
. 1 2n
£, (2) = ry z £, cos(!¢v) if ¢ = 1,...,n-1
v=]
1 2n v
() =51 D7 £ .
n o2 v

The generally non-zero sine amplitudes fz(l) are determined for & = 1,...,n-1

in a like manner by multiplying sin(ke ) into (4.6), summing over v, and using

(4.2) and (4.3) to find

1 2n
Ez(z) = ;; vzl fv s1n(2¢v) (4.9)

L = 1,2,-..,[1-1-

Here \1 is defined similarly to €y in (4.7):

0 if ¢ 0 or 2 =n

y, =n(l -¢§, -§, )= { (4.10)
2 28 20720 nif £ = 1,...,n-1

Note that y, = Y, = 0 and that these values, which will be of use in later
developments, do not occur in (4.9). Moreover, in the allowed range of % in

(4.9), we have Y, = €y = n. Expanding (4.9) and recalling our decision to set

£,(0) = £,(n) = 0, gives
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£,(0) =0
1 2n
tE,(0) == § £ sin(2e ) if £ =1,...,n-1
2 n v v
v=1
t,(n) =0 .

Equations (4.6)-(4.10) bear a resemblance to the well known Fourier series
representation of a continuous function of ¢, although the two-point
amplitudes f,(n) and f,(n) are peculiar to the discrete case.

Consider next a function that is a linear combination of cost(¢_-¢ )

terms:

']
[}

sv

n

glcos(e -0 )] = ] &(2) cose(e - ) . (4.11)
2=0

This form is motivated on the basis of (3.13k). Upon multiplying Bgy DY

cos(ké ), summing over v, applying (4.4) and recalling (4.7), the amplitudes

g(2) of gs, are defined to be

2n . :
- _ 1 : .
g(e) = e cosTEE) VZI g, cos(2e ) . | (4.12)

Since gg, depends only on the difference b -0, rather than on ¢, and ¢
separately, we can, for example, anchor ¢_-¢, to ¢, = 0, i.e., set s = 1 in
(4.12). This will be done later in (5.5b).

We finally consider the representation of an arbitrary discrete function

of two direction variables 6 and ¢, Let hsv

h(o ,0,)5 s,v = 1,...,2n.

Then we expect that h_, is of the form
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n n
hSV = kZQ 120 h, (k,2) cos(k¢s) cos(1¢v)

n n
+ ¥ @ A ,(k,2) cos(ke_ ) sin(ss )
k=0 £=0 s v
(4.13)
n n .
+ z z h, (k,2) sin(k¢s) cos(1¢v)
=0 2=0

n n
+ 2 2 h,,(k,2) sin(ké_) sin(2s ) .
© k=0 220 ® Y

To find the amplitudes h,,(k,%), for example, we multiply (4.13) by

cos(k'¢s) cos(2'¢v) and sum over s and v to obtain

2n 2n
S B 2n 2n
kZO 220 h,, (k,2) 521 cos(k¢s) cos(k'¢s) VZI cos(1¢v) cos(1'¢v)

+ 3 other similar terms.

Using (4.1)-(4.3) formally yields the first of the following defining equations:

ﬁll(k,z) = 1 %n §n h  cos(k¢ ) cos(ed )
“k€e s=1 v=1 SV s v
b ,(k,2) = L %n %n h_  cos(ké ) sin(2é )
kY2 s=1 v=1 3V s v
A 1 N | (4.14)
h, (k,2) = Yoo, 521 VZI hsv 51n(k¢s) cos(£¢v)
. 1 2n 2n ]
h,,(k,2) = ;;;; L vzl hsv cos(k¢s) 51n(1¢v)
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Analogous operations readily yield similar formulas for the remaining three
amplitudes as shown in (4.14). The pattern of the formulas follows from and
builds precisely on the one-dimensional case: see (4.8) and (4.9) for the
allowed ranges of kland 2. Note that cosine amplitudes have €9 while sine
amplitudes have Yy normalizers, and that‘ez =y, =n in the common allowed
ranges (k,2 = 1,..;,n-1). The arbitrary zero amplitudes £,(0), fz(n) now have
their counterparts in ﬁlz(k,l) = EZI(k,l) = ﬁzz(k,l) = 0 for k and £ equal to 0
or n, as the "2" subscript on h requires. Thus, for future reference we

summarize these singular values as

h, ,(k,0) = h ,(k,n) =0 y k=0,..0,n

h,,€(0,2) = h, (n,2) =0 y £ =0,..0,n

. . (4.14a)
h,,(0,0) = hzz(n,n) =0

fi,,(n,0) = f,,(0,n) = 0

It will turn out that when (4.14) and (4.l4a) are applied to the air-water
surface's transfer functions in §5b below, the amplitudes h,,(k,%) and h,,(k,%)
will be identically zero owing to certain symmetries of the surface.

We now have at our disposal all of the tools necessary for converting the

discrete geometrical Natural Hydrosol Model into a discrete spectral form.

¢. Rayleigh's Equality

A check on the spectral parts of the computer code can be made using a
Rayleigh-type equality, which relates the squares of the values f, to the
squares of their amplitudes f£,(2) and £,(2). To derive the present form of

Rayleigh's equality, we evaluate Z f: in terms of the amplitudes, as follows:
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v=1 v=1k=0

2n 2nf{ n '
] f£2 341 |Ei(k) coslke ) + £,(k) sin(k¢v2|} x

X

n
{gZo fl(ﬂ.) cos(wv) + fz(ﬂ.) sin(mvﬂ}

n n . 2n
2 fl(k)'fl(l) 2 cos(ke ) cos(2¢ )
k=0 2=0 v=1 M M

+

3 similar terms.

The sums over v are evaluated by (4.1)-(4.3). The four preceding summation

terms reduce to two?

2n n
Zl £2 = kzo zzo B (o) B () nCe,  +6 _ +8 0 o)
n
+ Zo zzo B,(k) £,(0) n(8, _ -8 0 =8 0 o) -

Only the k=% terms remain, and thereby we find the desired form of Rayleigh's

equality:

2n
1 f£2

v=1

i

n
L[ 0 ey, fg(zﬂ : © (4.15)
L= . .

Expanding (4.15) and explicitly evaluating €, and v, gives an alternate useful

form

2n
Lo§ f-ty0 1 2 22(2) + Eg(mﬂ + £2(n) . (4.16)

v=1

A Rayleigh's equality can be derived for the two-dimensional case by

evaluating z Z h:v. The result corresponding to (4.15) is
s v
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n n X
2 € € ﬁfl(k,l) + ¢ v h?2 (k,2)
k'2 12
k=0 £=0 [:k .

h3, (k,2) + Y Y, ﬁ%z(k,lﬂ .
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5. THE NATURAL HYDROSOL MODEL IN DISCRETE SPECTRAL FORM

a. Transforming the Radiative Transfer Equation to Spectral Form: The Local
Interaction Equations

The discrete geometric transfer equation shown in (3.12) can be rewritten
as separate equations for upward radiances, N+(y;u,v) where Q,,, is in Z,, and
for downward radiances, N (yju,v) where Q,, is in 2_. The + and - superscripts
are now added to the radiances to denote which hemisphere, Z, or 3_, contains
Q,, (recall the discussion leading to (3.2)). In a similar fashion, a general
function of (r,s) and (u,v) would require two superscripts. Thus for the phase

function p(yj3r,s|u,v) we would write

."p++(y;r,s|u,v)" for p(ysr,s|u,v) if Q.4 in 5, and Q, in =,
"ot (y;r,s|u,v)" for p(y;r,s|u,v) if Q. in E, and Q,, in =_,
"ot (ysr,s|u,v)" for ply;r,s|u,v) if Q.. in =_ and Q,, in =,
"p " (ysr,s|u,v)" for plysr,s|u,v) if Q.. in =_ and Q,, in =_.

The isotropy of the phase function as expressed by (3.13h) implies that

p*t(ysr,s|u,v) = p (ys5r,s]|u,v)

and

P+-(Y;Y,S|U,V) p-+(y;r,s|u,v).
Thus only a single superscript is needed, and we shall write
"p*(ysr,s|u, V)" for p**(yir,s|u,v) (= pT(ys5r,s)u,v))

and (5.1)

"p (y3r,s|u,v)" for p*T(ys;r,s|u,v) (= p~*(ysr,s|u,v)),
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where we have recalled the azimuthal symmetry of the quad-averaged phase
‘function. With the superscripted notation, the quad-averaged radiative transfer

equation of (3.12) takes its two-flow form:

+

ru, Tr0v) - o (yiu,) ¢ 0(y) ] ] W' Grie,e) pCyir,sfu,v)
. r 8

(5.2)

+

-~ ¥

wly) } ¥ N (y;r,s) p (yir,s|u,v)
rs

where now y, > 0 and

X <ysz

Uyr = lyee.,m

Vy8 = 1l,...,2n0

and "2 2" represents sums over hemispheres indicated by the superscript on N.

Eq:ation (5.2) is a coupled pair of differential equation systems. The
upward system is obtained by taking all upper signs together. This system
describes the evolution with depth y of the upward radiances N*(y;u,v). The
downward system is obtained bf taking all lower signs together, and describes
the evolution of downward radiances N (yju,v). Note particularly that , > 0
for u = 1,...,m for both upward and downward systems; the negative values of u,
;een in (3.12) are now incorporated in the #u, notation of (5.2).

The system (5.2) is in the form of the local interaction principles or the
local form of the principles of invariance. See Preisendorfer (1965, p. 103)
and H.0., Vol. III, p. 4; Vol. II, p. 295. This pair of systems of differential
equations can be solved as it stands using boundary conditions (3.17), (3.18)
and (3.25) and applying the general tools and procedures of §6 and §7, below,

leading to the various reflectance and transmittance matrices of the body of the
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water mass. However, as noted in our introductory remarks, the computation and
storage loads accompanying (5.2) can be cut considerably by first resolving the
N:(y;u,v) into their azimuthal spectral amplitudes, and finding the spectral
counterparts of (5.2).

The derivation of the spectral form of (5.2) begins by noting that, for
fixed y and u values, Nt(y;u,v) as a function of v can be represented by a

trigonometric polynomial of the form (4.6)*:

n

IZO [A](y5u38) cos(2e)) + A3(y3u3e) sin(ee )] . (5.3)

as<x<y<zsb

+
N (ysu,v)

u=1l,...,m

V=1,00e42n

We have added arguments (yju) to the cosine amplitudes for radiance, Af(y;u;z),
and to the sine amplitudes for radiance, A%(y;u;z), in order to show their full
functional form as needed in the computations. These amplitudes, for fixed y
and u, are computed from equations (4.8) and (4.9) given the v-dependence of

Nt(y;u,v). Specifically, we have, for the case of quads:

2n
AT (y,u, L) = l— 2 N‘(y,u v) cos£¢ s. 2 =0,...,n (5.3a)
€2 v=1
u=1,,..,m1
1 2n
At ,(y3use) = — 2 N‘(y,u v) sxnz¢ y £ =1,...,n-1 (5.3b)
Yy v=1
u = 1,...,!!!‘1

* Theoretical works on radiative transfer theory (e.g., Pre1sendorfer, 1965 or
1976) sometimes use the notation "A _(y,*;u;2)" instead of "A‘(y,u,l) , that
is, they try to keep a basic symbol such as A_ free of avoxdgble
superscripts. The present notation is chosen so that the arguments of a
function, here y, u and %, show only those independent variables which the
associated FORTRAN computer code references in DO-loops.
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Of particular interest is the 2=0 case for the cosine amplitude. This will
serve to define a generalization of the classic two~flow irradiance model (in

§8). In this case (5.3a) reduces to

Af(y;u;o) = m—;—i N't(y;_E_) da(g) (5.3¢)

u=1l,..0,m

where Z is the zone comprising all quads Qs V= 1,000,2v for u = 1,...,m"13
and R(Zu) is the solid angle content of Z , namely Q(Zu) =2n Q. for u = m;
Z, is the polar cap. Thus A%(y;u;O) is then simply the zonally averaged
radiance for zone Z , or cap Z,- The classic two~flow irradiance model has only
one "zone": the upper or lower hemisphere of . Hence the system of zero-mode
equations (5.23) below will serve to check the accuracy of the classic
irradiance model. For the polar cap case in general, where u = m, there is by
definition no dependence of radiance on the azimuthal angle ¢,» and an expansion
like (5.3) is formally trivial. To retain the useful notation in (5.3),

however, we recall the notational convention in (3.2) and define

Aj(ysmi0) = W (yim,-) (= gy | W (y38) da(®) , as in (5.3¢))
m Zm
b4
A (ysm3e) = 0 ’ 2 =1,.00,n (5.4)
and
b4
Az(y;m;z) = 0 , 2 =0,...on .

Therefore Eq. (5.3) may be regarded as holding for all quads and caps, if we
remember that all amplitudes for polar caps are by definition zero, except the

cosine amplitude for the zero azimuthal wave number.
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Continuing the preliminary observations leading to the spectral form of
(5.2), we note that, for fixed y, r and u, where r *+ m and u # m, the quad-
averaged phase functions pt(y;t,slu,v) can, by the isotropy conditions
(3.13e,k), be written as linear combinations of cosl(¢s-¢v), S,V = l,ee0,2n.
Thus pt(y;t,s|u,v) can be represented by a series of the form (4.11), namely

*

+ -
p (ysr,sfu,v) = p

it c~13

(ysr,uje) cosz(¢s-¢v) (5.5a)
=0
Xx £ y<z

ry,u = l,ee.,m

S,v = 1,...,2n,
The amplitudes ﬁt(y;r,ugl) are defined by an equation of the form (4.12), namely

2n
+
(ysr,use) = E_EE%TE;_T 21 p (ysrys|u,v) cosz(¢s-¢v) . (5.5b)
L s’ v=

We next consider the four cases which occur in numerical computations of
the amplitudes ﬁt(y;r,ugl). Each of these cases is evaluated by specializing
the form of (5.5b). They are as follows:

1) Quad-to-Quad case (u,r = l,...,m=1). With s =1, (5.5b) becomes

1 2n
= — z p (y3;r,1|u,v) cos(ge ) (5.6a)
€2 v=l v

”~~
<
-e
~
-
[
-we
©
N
[}

2) Cap-to-Quad Case (r =m} u = l,...,m~1). Then (5.5b) becomes
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+ +

p (y3m,u30) = p~(y3m,-|u,l)

+

p~(ysmyu32) =0 , 2 =1,...,n (5.6b)

3) Quad-to-Cap case (r = 1,...,m=1} u = m). Then (5.5b) becomes

I b
p (y3r,m3;0) = p(y;r,1|m,-)
+
p(ysr,m3) =0 , 2 = 1,...,n (5.6c)
4) cap~to-Cap Case (r = m, u = m). Then (5.5b) becomes
+ +
p (y3m,m30) = p (y3;m,-|m,-)
+
p (ysmym3;2) =0 , 2 = 1,...4n : (5.6d)

Observe in (5.6a,b,c) that s or v has been set to 1, és the case may be. This
is permissible by virtue of the dependence of pi(y;r,slu,v) on v-s rather than
on v and s separately (see (3.13k)).

We turn next to the decomposition of (5.2) into its spectral components.
We split the task into two main parts: (i) the case of a non~polar-quad output
radiance Ni(y;u,v), u=1l,...,m1; and (ii) the case of the polar cap. radiances
Nt(y;m,-).

For case (i), we now use the radiances and phase functions from (5.3) and
(5.5a) to substitute into (5.2). The sum over quads in (5.2) must now be
explicitly evaluated as in (3.2). For the present case of a non-polar output

quad, i.e., u = 1l,...,m1, the radiative transfer equation (5.2) becomes
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w L § A¥(y3u32) cos(1s ) + a( 'u;l) sin(2¢_) =
M dy Lo 1 YUy v 2\Y Uy v

n
- zzo[gf(y;u;l) cos(2¢v) + Af(y;u;!) sin(1¢éz] _ (5.7)

| C~10

r=1l s=1 2=0 0

m-1 2n n . -
+ w(y) 2 z z ' Cysrse) cos(1¢ ) + AY ,(ysrse) 51n(1¢ ) p(ysryusk) cosk(¢s-¢v)
k

+
+ w(y) A:(y;m;O) p~(ysm,u30)

m-1 2n n n . B
ruly) Y Y ) [a](yirs0) cos(26_ ) + A S(ysrie) sin(2¢_) Y B (y3r,usk) cosk(e - )
r=]l s=1 =0 k=0 s v

+ w(y) A:(y;m,O) ﬁx(y;m,u;o) .

The second and fourth terms on the right side of (5.7) each have the form

m-1 n 2n ]
w(y) Y} ) 2 A, (y5r32) plysr,usi)| ) cos(20 ) cosk(é_-¢ )|
r=1 2=0 k=0 s=1
m=1 n [ 2n ]
+u(y) Y ) Z A, (ysr3e) plysr,usk)| | sin(2e,) cosk(e -0 )| . (5.8)
r=1 2=0 k=0 _ s=1 -

Application of (4.4) and (4.5) to the sums over s gives

m-1
W(Y)rg % E A, (ysr3e) p(ysr,usk) n(6k+1 *oh .t 6k+1-2n) cos(1¢v)
m-1
+ w(y)rz % E A,(ys3r;e) p(ysr,ujk) n(5k~1 = Sy T 5k+1-2n) 51n(2¢v)

w(y)rz g A (ysr3e) p(ysr,u3e) n(l + 621 + 522_2n) cos(2¢v)

+

wly) § Y A,(y3r30) plysr,uze) n(l - &

n) sin(2¢v) .
r=1 ¢

20~ 8292
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Thus (5.7) becomes

+ +

n [(dA(ysu3e) dA(ysuse)
Ty ————— cos(2¢ ) + ———— sin(24 )| =
u o dy v dy v
=0
o1+ + )

- z A (y;u32) cos(2é_) + A (y3u;e) sin(Le E] (5.9)

=0 v v

n ml
+ e gm e ‘t - »

+ w(y) QZO rZlAl(y,r,!.) p (ysryust) n(l + S50 f 522-2n) cos(2¢v)

+ w(y) A:(y;m;O) ﬁi(y;m,u;O)

n m-l
+
+ w(y) z z A:(y;r;z) p (ys;r,u3t) n(l - 622 - 622-2n) sin(2¢v)
=0 r=1
m1

n
- ¥
+ w(y) gzo rZlAl(y;r;z) p (ysr,yuse) n(l + 8,0 * 622-2n) cos(£¢v)

+ w(y) A:(y;m;O) ﬁx(y;m,u;O)

n <
+w(y) ¥ ) A (ysrse) p (ysr,use) n(l - 8§50 ™ $30-2n) sin(2e ) .
=0 r

The polar quad terms are coefficients of cos(2¢ ) for & = 0, and as such they
can be incorporated into the other summations. Now recalling e, of (4.7) and

v, of (4.10), the preceding equation can be written
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+ +
n |dA (ysu;3e) dA;(y3u3t)
Fu z —_—— cos{l¢ ) + ——————— sin(ee )| =
n .20 dy v dy v
T |, + .
- z Al (y;u38) cos(2e ) + Ay(ysu;e) sin(2e ) : (5.10)
=0
n m=1 o+ . o+
+ w(y) Z Z A, (ysr32) p(ysr,usze) €, * A (ysm32) p (y;m,u;l)&z °°5(1¢v)
L= r=1
n Im-l +
+ w(y) ¥ Y Ay(ysrie) p"(ysr,ust)y | sin(2e )
. L= r=1 .
n m-1 - T - ¥
+ w(y) 2 Z A (ysr3e) p (ysr,uzt) e, * A, (y;m3e) P (y;m,u;z)sz cos(2¢v)
g= r=1
n |m=1 _ z
+w(y) ) Y Ay(ysrse) b (yir,u32)y | sin(2e ) .
=0 |r=1

We now take advantage of the linear independence of cos(l¢v) and sin(4¢,)
to observe that this last equation must hold true for each % value 2 = 0,...,n
for the A, and for 2 = 1,...,n-1 for the A, amplitudes separately;
Accordingly, collecting together and equating coefficients of cos(%¢,) in.

(5.10) gives
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d i L] L] -— i L] L]
;Uu E Al(y,uyl) = ‘AI(Y,UQE)

m—-1

+ . + .+ )
+ w(y) €, Z A (ysr3e) p (ysr,use) + w(y) 62 A (ysm3e) p~(ysm,use)
r:l .

(5.11)
m-1

+ w(y) €y z A:(y;r;l) ﬁx(y;r,u;l) + w(y) 61 A:(y;m;l) ﬁ;(y;m,u;ﬁ)
r=1

where x < y < z
u'= l,coc,m-l
2 = 0,e0eyn

and M, > 0.

Collecting together and equating coefficients of sin(£¢v) on each side of

(5.10) for & = 1,...,n-1 in (5.10) gives a similar equation for the sine

amplitudes:

+ +
T %; A (ysuse) = -A7(ysuse)

m-1 + +

+wly) v, } A (ysr3e) p (ysr,use) (5.12)

: r=1 .
m=1 .

+ w(y) Y, z A,(ysr3e) p (ysr,use)
r=1

where x

IA
~<

1A

N

and u._ > 0.
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Since A%(y;u;z) = 0 when £ = 0 or £ = n (recall Eq. (4.9) and the comments
following (4.6)), we can regard (5.12) as formally holding for the full range
of £ values, 2 = 0,1,...,n.

We now return to (5.2) and consider case (ii), namely the case of the
polar cap radiances Ni(y;m,-). Once again our goal is the appropriate
spectral decomposition of (5.2). Setting u = m in (5.2) and recalling the

procedure in (3.2) we obtain

:umg;u%ym¢)=-mﬁymp) (a)
m-1 2n . +
+ w(y) 2 z N (y3r,s) p (ysr,s|m,-) (b)
r=] s=1
(5.13)
+ w(y) N+(y;m,-) pi(y;m,-|m,-) (c)
m~1 2n _ a
+ w(y) Z } N (y3r,s) p'(ysr,s|m,-) (d)
r=l s=1

+ wly) N (ysm,-) p (y,m,-|m,-) (e)

Now Ni(y;m,-) in line (a) of (5.13) is reduced to spectral form by (5.4).
Indeed, we see at once that in the present case (of u = m) there will be only
one up-dbwn pair of nonzero spectral radiance amplitudes, namely A?(y;m;o).
Thus (5.13) should reduce to a nontrivial pair of coupled equations describing
the depth rate of change of A}(y;m3;0) and A7(y;m;0). The reduction of term
(b) in (5.13) is made via (5.3) and the quad~to-cap case (5.6c) for
pt(y;r,s|m,°). From the latter we see that the only nonzero term in (5.5a) is

that for & = 0. Hence term (b) in (5.13) becomes
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m-1 2n n + . +
w(y) z z { z (A, (ysrs52) cos(2¢s) + A (ysrsie) sin(2¢s)] p~(ys;r,m;0)

r=1 s=1 {1=0
(b)
Moving the sum-over-s operator inward to the trigonometric functions we see
that (b) in (5.13) reduces to
m-1 + +
w(y) €, 2 A,(y3;r30) p (y3r,m;0) (b)
r=1
In like manner, (c) in (5.13) becomes
+ 4
w(y) A, (y;m;0) p~(ys;m,m;0) (c)
Also in like manner, (d) and (e) in (5.13), respectively, become
m-1 : :
w(y) e, § A[(y3£30) p' (ysr,m30) (d)
r=1
and
w(y) A:(y;m;O) ﬁ;(y;m,m;O) . (e)

Assembling these results (5.13) becomes
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d . *
F U Iy A;(y3m;0) = -A7(y;m;0)

m=1 + 4 + P 4

+ w(y) e, z A, (y3r,0) p (ysr,m;0) + w(y) A,(y;m;0) p”(y3m,m;0)
r=1 '

(5.14)

m-1l : - :

+uly) e, ) A[(y3r;0) p'(ysr,m;0) + w(y) A (y;m;0) $ (ysm,m;0)
r=1

This is the desired spectral form of (5.2) for the polar cap case u = m.

As they stand, the set of coupled equations (5.11), (5.12) and (5.14)
constitute the spectral form of (5.2). However, unlike (5.2), the p